skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Davis, Willow_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Thiol‐disulfide interchange has been a large field of study for both biochemists and physical organic chemists alike due to its prevalence within biological systems and fundamentally interesting dynamic nature. More recently, efforts have been made to harness the power of this reversible reaction to make self‐assembling systems of macrocyclic molecules. However, less effort has focused on the fundamental work of isolating these assemblies and studying the factors that control the assembly and sorting of these emerging cyclic systems. A more complete fundamental understanding of factors controlling such self‐assembly could also improve understanding of the complex systems biology of thiol exchange while also aiding in the design of dynamic thiol assembly to enable applications ranging from drug delivery and biosensing to new materials synthesis. We have shown previously that pnictogen‐assisted self‐assembly enables formation of discrete disulfide macrocycles and cages without competition from polymer formation for a wide variety of alkyl thiols. In this study, we report the expansion of pnictogen‐assisted self‐assembly methods to form disulfide bearing macrocycles from aryl thiol containing ligands, allowing access to previously unreported molecules. These studies complement classical physical organic and chemical biology studies on the rates and products of aryl thiol oxidation to disulfides, and we show that this self‐assembly method revises some prevailing wisdom from these key classical studies by providing new product distributions and new isolable products in cyclic disulfide formation. 
    more » « less
  2. Abstract This work reports the synthesis and self‐assembly of perylene diimide (PDI)‐containing macrocycles designed for facile and high‐throughput production of shape‐persistent, macrocyclic organic electronic materials. Specifically, utilizing dynamic covalent chemistry (DCvC), this work showcases ditopic thiols can be utilized as building blocks toward 3D materials with defined porosity, low‐lying unoccupied molecular orbitals, and intrinsic fluorescence. The PDI disulfide‐linked macrocycles are generated in a single step from the thiolic building block to yield dimeric through pentameric assemblies in overall 95% combined yield; moreover, following self‐assembly, the disulfide ensemble is sulfur extruded to the more kinetically stable thioether in 79% combined yield. The modular design suggests these methods can be used to easily self‐assemble other electronically active precursors for utility in porous macrocyclic materials where stepwise pathways may be laborious and/or low yielding. 
    more » « less